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ABSTRACT

The accuracy of the Levermore-Pomraning model for particle transport through a binary stochastic
medium is investigated using an interior source benchmark problem. As in previous comparisons
of the model for incident angular flux benchmark problems, the model accurately computes the
leakage and the scalar flux distributions for optically thin slabs. The model is less accurate for more
optically thick slabs but has a maximum relative error in the leakage of approximately 10% for the
problems examined. The maximum root-mean-squared relative errors for the total and material
scalar flux distributions approach 65% for the more optically thick slabs. Consistent with previous
benchmark comparisons, the results of these interior source benchmark comparisons demonstrate
that the Levermore-Pomraning model produces qualitatively correct and semi-quantitatively correct
results for both leakage values and scalar flux distributions.
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1. INTRODUCTION

Particle transport through binary stochastic mixtures has received considerable research attention
in the last two decades [1, 2]. Much of the research has focused on the development and analysis
of approximate deterministic models for the solution of such particle transport problems. The
most ubiquitous approximate deterministic model is often referred to as the
Levermore-Pomraning or the Standard Model [2]. The accuracy of the Levermore-Pomraning
model has previously been examined by Adams et al. [3] using a set of benchmark problems
involving a non-stochastic isotropic angular flux incident on one boundary of a one-dimensional
planar geometry binary stochastic medium. The benchmark suite is characterized by nine
different sets of material cross sections, mean material slab widths, and material scattering ratios
as well as three different total slab widths. The material statistics are assumed to be Markovian
and spatially homogeneous. The fiducial quantities for comparison are the ensemble-averaged
reflection and transmission through the slab. Zuchuat et al. [4] extended these planar geometry
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benchmark solutions and Levermore-Pomraning model comparisons to include the
ensemble-averaged total and material scalar flux distributions.

In this paper, we investigate the accuracy of the Levermore-Pomraning model for a related set of
one-dimensional planar geometry interior source benchmark problems. To our knowledge, a
systematic study of the accuracy of the planar geometry Levermore-Pomraning model for a
problem driven by an interior source has never been published (although an isolated interior
source result was recently published by Sanchez [5].) Because the interior source scalar flux
distributions are of an inherently different character than the distributions obtained for the
incident angular flux benchmark problems, this benchmark comparison extends the domain of
problems for which the accuracy of the Levermore-Pomraning model has been investigated. The
material specifications of the binary stochastic medium examined in this paper are the same as for
the standard set of benchmark problems first examined by Adams et al. [3], but the benchmark
problems are driven by a uniform isotropic interior source rather than an isotropic incident
angular flux. The benchmark solutions to these problems were obtained using the Monte Carlo
procedure described in [3] in which independent material realizations are sampled from the
Markovian statistics and the transport problem is solved for each realization using the discrete
ordinates transport method [6]. 5× 105 independent realizations were simulated and the results
averaged to obtain ensemble-averaged values for the leakage from the slab. We also tabulate the
ensemble-averaged total and material scalar flux distributions using the procedure described in
Ref. [4].

The Levermore-Pomraning model solutions in this paper were obtained using the discrete
ordinates angular approximation and the simple corner balance spatial discretization [7]. The
iterative solution uses a diffusion synthetic acceleration algorithm to accelerate convergence [8].

The remainder of this paper is organized as follows. In Section 2, we describe the interior source
benchmark transport problem we use to assess the accuracy of the Levermore-Pomraning model.
We also describe the process used to obtain the benchmark solutions. We briefly describe the
Levermore-Pomraning model in Section 3. We present numerical comparisons of the
Levermore-Pomraning model solutions to the benchmark solutions in Section 4. We give general
conclusions and possible directions for future work in Section 5.

2. BENCHMARK TRANSPORT PROBLEMS

We consider the following time-independent monoenergetic neutron transport problem with
isotropic scattering in a one-dimensional planar geometry spatial domain defined on 0 ≤ x ≤ L:

µ
∂

∂x
ψ (x, µ) + σt (x)ψ (x, µ) =

1

2
σs (x)

∫ 1

−1

ψ (x, µ′) dµ′ +
1

2
q (x) ,

0 ≤ x ≤ L , −1 ≤ µ ≤ 1 , (1)

q (x) =
1

L
, 0 ≤ x ≤ L , (2)

ψ (0, µ) = 0 , µ > 0 , (3)
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ψ (L, µ) = 0 , µ < 0 . (4)
Eqs. (1)–(4) are written in standard neutronics notation [6]. The interior source defined by Eq. (2)
is non-stochastic, spatially uniform, and results in one neutron sourced into the medium per unit
time. The vacuum boundary conditions given by Eqs. (3) and (4) are non-stochastic. The
stochastic spatial medium is assumed to be composed of alternating slabs of two materials,
labelled with the indices 0 and 1, with the mean material slab width for material i denoted as Λi.
The total and scattering cross sections for each material are uniform and are denoted as σi

t and σi
s,

i = 0, 1, respectively. The distribution of material slab widths in the planar medium is assumed to
be described by spatially homogeneous Markovian statistics [2], in which case a slab width for
material i, λi, can be sampled from an exponential distribution given by

fi (λi) =
1

Λi

exp

(
−λi

Λi

)
. (5)

Given the mean material slab widths, the probability of finding material i at any given point in the
spatial domain, pi, is given by

pi =
Λi

Λ0 + Λ1

. (6)

This material probability corresponds to the volume fraction of the material in the problem.

The fiducial comparison quantities are the ensemble-averaged leakage from the slab at x = 0,
〈J0〉, defined as

〈J0〉 =

∫ 0

−1

|µ| 〈ψ (0, µ)〉 dµ , (7)

and the ensemble-averaged leakage from the slab at x = L, 〈JL〉, defined as

〈JL〉 =

∫ 1

0

µ 〈ψ (L, µ)〉 dµ . (8)

In the limit of an infinite number of realizations, the leakage at the left and right boundaries of the
slab should be identical, i.e. 〈J0〉 = 〈JL〉. Given the finite number of realizations used in the
generation of our benchmark results, we choose to simply compare the leakage from the slab at
x = L, 〈JL〉. In addition, we compare the ensemble-averaged total and material scalar flux
distributions, 〈φ (x)〉 and 〈φi (x)〉, i = 0, 1, respectively, as these distributions determine reaction
rates in the system.

The material parameters for the benchmark transport problems are given in Table I using the
notation of Ref. [4]. The scattering ratio for material i is defined as ci = σi

s/σ
i
t. For each set of

material parameters (cases 1, 2, and 3), three sets of scattering ratio combinations (cases a, b, and
c) and three slab widths (L = 0.1, 1.0, and 10.0) are considered. For all cases, the
ensemble-averaged total cross section, defined as 〈σt〉 = p0σ

0
t + p1σ

1
t , is unity. The different case

numbers (i.e. 1, 2, and 3) represent permutations of materials with mean materal slab widths of
optical depth 0.1, 1.0, and 10.0. The different case letters (i.e. a, b, and c) represent varying
amounts of scattering for each material.

We generated the benchmark solutions, including scalar flux distributions, using the
methodologies described in Refs. [3] and [4]. We now briefly describe this benchmark procedure.
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Table I. Material parameters for benchmark transport problems

Case σ0
t Λ0 σ1

t Λ1 Case c0 c1 L

1 10/99 99/100 100/11 11/100 a 0.0 1.0 0.1
2 10/99 99/10 100/11 11/10 b 1.0 0.0 1.0
3 2/101 101/20 200/101 101/20 c 0.9 0.9 10.0

One instance of the material realization is generated by first sampling the material located at
x = 0 using the probabilities defined in Eq. (6). Given this sampled material, a material slab
width is sampled from the Markovian exponential distribution, Eq. (5), using the mean material
slab width, Λ0 or Λ1, corresponding to the sampled material. The material slab width for the next
(different) material is then sampled in the same manner. This process is repeated until the sum of
the sampled material slab widths equals the total slab width L. The last sampled material slab
width may require truncation to the total slab width. Given this single material realization, the
transport problem described by Eqs. (1)–(4) is then solved for that realization using a discrete
ordinates transport code. This procedure is repeated a large number M of times and the results
averaged to obtain ensemble-averaged values. The ensemble-averaged leakage at x = L is
computed as [3]

〈JL〉 =
1

M

M∑
m=1

∫ 1

0

µψm (L, µ) dµ , (9)

where ψm (L, µ) is the angular flux at x = L computed for realization m, and the angular integral
is performed using the same quadrature as in the discrete ordinates calculation. An analogous
expression holds for the leakage at x = 0. The ensemble-averaged total scalar flux distribution is
computed as [4]

〈φ (x)〉 =
1

M

M∑
m=1

φm (x) , (10)

where φm (x) is the total scalar flux distribution for realization m at spatial location x. The
computation of the ensemble-averaged material scalar flux distributions is slightly more
complicated. The ensemble-averaged material i scalar flux distribution is computed as [4]

〈φi (x)〉 =
1

Mi

Mi∑
mi=1

φmi
(x) , (11)

where Mi ≤M is the number of realizations with material i present at location x, and the sum is
computed only for those realizations.

The discrete ordinates transport code used to generate the benchmark solutions utilizes the linear
discontinuous spatial discretization with the mesh spacing in each material chosen such that
σi

t∆x

|µ|min
≤ 1

10
, where |µ|min is the minimum cosine in the quadrature set [6]. 5× 105 independent

statistical material realizations were sampled from Markovian statistics and simulated for each
case. The total and material scalar flux distributions were tallied at the edges of 100
uniformly-spaced spatial zones. (We enforced a minimum of 100 spatial zones for each
independent material realization.)
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We found that angular convergence for the optically thin slabs (i.e. L = 0.1) could only be
achieved using very high quadrature orders for these interior source benchmark problems. This
convergence difficulty is not entirely unexpected, as optically thin problems are known to require
high order quadrature sets to converge because of the effect of the vacuum boundaries [6]. We
examined in detail the case 1a benchmark problem for L = 0.1. This particular case has one
highly probable material, material zero with p0 = 0.9, with a small total cross section,
σ0

t = 10/99, resulting in many realizations being composed of optically thin slabs of width
σ0

t ∆x = 1/99 mean free paths. The solution of this problem was not converged in angle using a
standard S96 Gauss-Legendre quadrature set. This same problem was converged in angle when
using a S96 double-PN quadrature set [6]. Based on this result, we used a double-PN quadrature set
with N = 96 for the problems with total slab widths of L = 0.1 and 1.0 and a standard
Gauss-Legendre quadrature set with N = 64 for the problems with a total slab width of L = 10.0.

We computed the transport solution for each material realization using an unmodified planar
geometry discrete ordinates transport code written in Fortran. We performed the calculation of the
ensemble-averaged results using a Python language driver script (less than 400 lines of actual
code) that 1) samples each material realization, 2) generates and writes to disk an input file for the
discrete ordinates transport code corresponding to the sampled material realization, 3) runs the
transport code, 4) parses standard output files from the transport code to obtain the computed
leakage values and scalar flux distributions for that material realization, 5) computes the required
ensemble-averaged sums over all material realizations, and 6) writes the ensemble-averaged
results to a summary file. As the generation of these benchmark solutions is a process to be
performed only a limited number of times, this approach has the significant advantage of
requiring no modification or specialization (and associated testing) of the discrete ordinates
transport code for the solution of these benchmark problems. An obvious disadvantage to this
approach is that the linkage of the Python processing script to the transport code via writing input
files and parsing output files possesses an inherent inefficiency. To ameliorate this inefficiency, we
utilized the pyMPI [9] Python extension to parallelize using the MPI message passing
interface [10] the sampling of the independent material realizations and the solution of the
transport problems for each of these realizations. This parallelization is very efficient, as each
MPI process can independently sample a subset of the total number of material realizations and
solve the corresponding transport problems with no parallel communication with other processes
required until all of its computational work is completed. Care must be exercised to ensure that
independent random number streams are utilized on each MPI process. The benchmark solutions
described in this paper were obtained using typically 512 processors of a Linux cluster with
sixteen AMD Opteron 2.3 GHz processors per compute node. Each benchmark case required a
few to several hours of simulation time.

Using the same procedure and coding, we have regenerated the benchmark solutions to the
standard set of benchmark problems defined in Ref. [3]. We compared our benchmark solutions
against the probabilities of reflection and transmission published in Refs. [3] and [4], finding
agreement to typically two to three digits, and against the scalar flux distribution data remaining
available [11] from Ref. [4]. These comparisons establish confidence that our benchmark
procedure is consistent with previously published benchmark results.
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3. LEVERMORE-POMRANING MODEL

The Levermore-Pomraning model approximation to Eqs. (1)–(4), assuming spatially
homogeneous and time-independent statistics, is given by [1, 2]:

µ
∂

∂x
ψi (x, µ) + σi

tψi (x, µ) =
1

2
σi

s

∫ 1

−1

ψi (x, µ
′) dµ′ +

|µ|
Λi

[ψj (x, µ)− ψi (x, µ)] +
1

2
qi (x) ,

0 ≤ x ≤ L , −1 ≤ µ ≤ 1 , (12)

qi (x) =
1

L
, 0 ≤ x ≤ L , (13)

ψi (0, µ) = 0 , µ > 0 , (14)

ψi (L, µ) = 0 , µ < 0 , (15)

for the material index i = 0, 1 and j 6= i. Here ψi (x, µ) is the material i angular flux at spatial
location x in direction µ. The numerical solutions to Eqs. (12)–(15) presented in this paper were
obtained using the standard discrete ordinates angular approximation and the simple corner
balance spatial discretization [7] with 100,000 uniformly-spaced spatial zones. These simulations
used an S128 double-PN quadrature set for the L = 0.1 and L = 1.0 slabs and an S128 standard
Gauss-Legendre quadrature set for the L = 10.0 slab. The iterative solution uses a diffusion
synthetic acceleration algorithm to accelerate convergence [8] and required in all cases eleven or
less iterations to converge to a tolerance of 10−8.

4. NUMERICAL COMPARISONS TO BENCHMARK PROBLEMS

In this section, we evaluate the accuracy of the Levermore-Pomraning model for the set of
benchmark problems described in Section 2. We assess the accuracy of the ensemble-averaged
leakage at x = L, 〈JL〉, computed using the Levermore-Pomraning model compared to the
benchmark values using a relative error computed as

E〈JL〉 =
〈JL〉LP − 〈JL〉benchmark

〈JL〉benchmark

. (16)

We assess the accuracy of the scalar flux distributions using a root-mean-squared (RMS) relative
error computed as

E〈φ〉 =

√√√√ 1

N

N−1∑
j=0

(〈
φj

LP

〉
−
〈
φj

benchmark

〉〈
φj

benchmark

〉 )2

, (17)

where 〈φ〉 represents the ensemble-averaged total or material scalar flux distribution, 〈φ (x)〉 or
〈φi (x)〉, i = 0, 1, respectively, and the summation is over the N = 100 spatial zones. The
benchmark scalar flux results were computed using a discrete ordinates code with a linear
discontinuous spatial discretization [6]. The Levermore-Pomraning results were computed using
the simple corner balance spatial discretization [7] in which balance equations are written over
half-zones (“corners”), and the unknowns are the half-zone-averaged (“corner-averaged”) angular
fluxes. The zone-averaged angular flux (and hence scalar flux) can be computed as an appropriate
volume average of the half-zone quantities. We compare the Levermore-Pomraning zone-average
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scalar flux values with the benchmark zone-average values computed as the algebraic average of
the zone-edge values (consistent with the linear discontinous discretization).

The benchmark and Levermore-Pomraning values of the leakage 〈JL〉 are shown in Tables II–IV
along with the corresponding relative errors. The accuracy of the leakage computed by the
Levermore-Pomraning model generally improves as the slab width decreases. The
Levermore-Pomraning model accurately computes the leakage from the slab, to significantly less
than 1%, for the L = 0.1 slabs. The largest errors for the L = 1.0 slab width are on the order of
1%. For the L = 10.0 slab width, the relative errors in the leakage computed by the
Levermore-Pomraning model are typically a few percent, with the largest error approximately
10%.

Table II. Leakage 〈JL〉 comparisons for case 1

Case L Benchmark Levermore-Pomraning Relative Error E〈JL〉

a 0.48754 0.48755 2.05e-05

0.1 b 0.46595 0.46578 -3.65e-04

c 0.49250 0.49244 -1.22e-04

a 0.42520 0.42605 2.00e-03

1.0 b 0.34760 0.34412 -1.00e-02

c 0.44695 0.44494 -4.50e-03

a 0.15263 0.16575 8.60e-02

10.0 b 0.07307 0.06934 -5.10e-02

c 0.17484 0.17284 -1.14e-02

RMS of E〈JL〉 3.37e-02

The RMS relative errors for the total and material scalar flux distributions computed by the
Levermore-Pomraning model are shown in Tables V–VII. As in the case of the leakage values,
the accuracy of the Levermore-Pomraning model scalar flux distributions generally improves as
the slab width decreases. The Levermore-Pomraning model scalar flux distribution errors are
generally significantly less than 1% for the L = 0.1 slabs. The RMS relative errors for the
L = 1.0 slabs are generally a few percent, with the maximum error being 27% for case 2a. The
RMS relative errors for the L = 10.0 slabs are generally somewhat larger, with a maximum error
of 62% again for case 2a.
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Table III. Leakage 〈JL〉 comparisons for case 2

Case L Benchmark Levermore-Pomraning Relative Error E〈JL〉

a 0.48746 0.48746 0.00e+00

0.1 b 0.47027 0.47013 -2.98e-04

c 0.49246 0.49242 -8.12e-05

a 0.42543 0.42477 -1.55e-03

1.0 b 0.43594 0.43487 -2.45e-03

c 0.45494 0.45331 -3.58e-03

a 0.19073 0.19537 2.43e-02

10.0 b 0.29302 0.26783 -8.60e-02

c 0.31357 0.28361 -9.55e-02

RMS of E〈JL〉 4.36e-02

Table IV. Leakage 〈JL〉 comparisons for case 3

Case L Benchmark Levermore-Pomraning Relative Error E〈JL〉

a 0.49823 0.49823 0.00e+00

0.1 b 0.43532 0.43533 2.30e-05

c 0.49140 0.49140 0.00e+00

a 0.48812 0.48803 -1.84e-04

1.0 b 0.29946 0.29926 -6.68e-04

c 0.43577 0.43573 -9.18e-05

a 0.41133 0.40941 -4.67e-03

10.0 b 0.12966 0.12577 -3.00e-02

c 0.22563 0.21176 -6.15e-02

RMS of E〈JL〉 2.29e-02

We have plotted in Figs. 1–3 the total and material scalar flux distributions produced by the
benchmark procedure and the Levermore-Pomraning model for cases 1b, 2a, and 3b and L = 10
as representative results. The statistical fluctuations in the case 1b 〈φ1 (x)〉 distribution derive
from a small material probability p1 = 0.1 resulting in a relatively small number of realizations
contributing to the distribution. These statistical fluctuations were also observed in previous
benchmark comparisons [4]. As is evident in Fig. 2, the case 2a material zero scalar flux is
reasonably accurate (RMS relative error of 2.5%) while the material one scalar flux distribution
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Table V. Scalar flux comparisons for case 1

RMS Relative Error E〈φ〉

L Case Quantity Levermore-Pomraning

〈φ〉 7.71e-04
a 〈φ0〉 7.03e-04

〈φ1〉 2.63e-03

〈φ〉 6.51e-04
0.1 b 〈φ0〉 5.87e-04

〈φ1〉 1.57e-03

〈φ〉 8.48e-04
c 〈φ0〉 1.11e-03

〈φ1〉 8.25e-03

〈φ〉 2.00e-02
a 〈φ0〉 1.56e-02

〈φ1〉 8.48e-02

〈φ〉 9.44e-03
1.0 b 〈φ0〉 1.01e-02

〈φ1〉 2.38e-02

〈φ〉 2.07e-02
c 〈φ0〉 2.51e-02

〈φ1〉 5.71e-02

〈φ〉 5.00e-02
a 〈φ0〉 4.65e-02

〈φ1〉 1.08e-01

〈φ〉 6.55e-02
10.0 b 〈φ0〉 6.74e-02

〈φ1〉 1.19e-02

〈φ〉 1.39e-01
c 〈φ0〉 1.50e-01

〈φ1〉 4.26e-02

RMS of E〈φ〉 5.47e-02

RMS of E〈φ0〉 5.80e-02

RMS of E〈φ1〉 5.24e-02

exhibits large pointwise errors (RMS relative error of 62%). For this case, materials zero and one
have mean material slab widths of one and ten, respectively. Material one is purely scattering and
optically thick, conditions under which the Levermore-Pomraning model is known to be only
approximate. Material zero is purely absorbing, and hence the Levermore-Pomraning model
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Table VI. Scalar flux comparisons for case 2

RMS Relative Error E〈φ〉

L Case Quantity Levermore-Pomraning

〈φ〉 5.16e-04
a 〈φ0〉 5.48e-04

〈φ1〉 9.64e-04

〈φ〉 6.15e-04
0.1 b 〈φ0〉 5.59e-04

〈φ1〉 6.63e-04

〈φ〉 5.61e-04
c 〈φ0〉 5.47e-04

〈φ1〉 9.86e-04

〈φ〉 3.41e-02
a 〈φ0〉 1.04e-02

〈φ1〉 2.73e-01

〈φ〉 2.19e-03
1.0 b 〈φ0〉 1.91e-03

〈φ1〉 1.42e-02

〈φ〉 4.46e-03
c 〈φ0〉 6.52e-03

〈φ1〉 4.23e-02

〈φ〉 1.77e-01
a 〈φ0〉 2.49e-02

〈φ1〉 6.20e-01

〈φ〉 8.17e-02
10.0 b 〈φ0〉 8.25e-02

〈φ1〉 1.37e-01

〈φ〉 1.34e-01
c 〈φ0〉 1.45e-01

〈φ1〉 3.14e-01

RMS of E〈φ〉 7.98e-02

RMS of E〈φ0〉 5.63e-02

RMS of E〈φ1〉 2.53e-01

should be generally more accurate.
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Table VII. Scalar flux comparisons for case 3

RMS Relative Error E〈φ〉

L Case Quantity Levermore-Pomraning

〈φ〉 1.02e-03
a 〈φ0〉 1.60e-03

〈φ1〉 2.93e-04

〈φ〉 1.10e-03
0.1 b 〈φ0〉 1.55e-03

〈φ1〉 2.56e-04

〈φ〉 1.03e-03
c 〈φ0〉 1.60e-03

〈φ1〉 3.09e-04

〈φ〉 3.31e-03
a 〈φ0〉 4.57e-03

〈φ1〉 1.33e-02

〈φ〉 6.35e-04
1.0 b 〈φ0〉 1.00e-03

〈φ1〉 1.52e-03

〈φ〉 1.60e-03
c 〈φ0〉 2.84e-03

〈φ1〉 1.09e-03

〈φ〉 2.82e-01
a 〈φ0〉 9.71e-02

〈φ1〉 4.32e-01

〈φ〉 2.39e-02
10.0 b 〈φ0〉 2.49e-02

〈φ1〉 1.21e-02

〈φ〉 9.74e-02
c 〈φ0〉 1.50e-01

〈φ1〉 6.33e-02

RMS of E〈φ〉 9.97e-02

RMS of E〈φ0〉 6.01e-02

RMS of E〈φ1〉 1.46e-01

5. CONCLUSIONS

We have investigated the accuracy of the Levermore-Pomraning model for particle transport
through a binary stochastic medium using an interior source benchmark problem. As in previous
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comparisons of the model for incident angular flux benchmark problems [3], the model accurately
computes the leakage from optically thin slabs. The model is less accurate for more optically thick
slabs but has a maximum relative error in the leakage of approximately 10% for the problems
examined. The total and material scalar flux distributions exhibit similar trends, although the
maximum root-mean-squared relative errors for the more optically thick slabs approach 65%.

Overall, we find that the Levermore-Pomraning model produces qualitatively and
semi-quantitatively correct results for both the leakage values and the scalar flux distributions for
this interior source benchmark problem. The leakage values are accurate to within approximately
10%, while the total and material scalar flux distributions can exhibit significantly larger
pointwise and RMS relative errors. These findings are consistent with previous benchmark
comparisons of leakage and scalar flux distributions for the incident angular flux benchmark
problem [3, 4].

The benchmark and model comparisons and functionality described in this paper may serve as a
foundation for investigating algorithms for the solution of eigenvalue problems in a binary
stochastic medium. Benchmark results for eigenvalue problems with two-energy groups in planar
geometry have previously been generated [12], but no model comparisons have been performed.
Such benchmark and model comparisons could be useful for testing algorithms aimed at
modelling pebble bed type reactors.

The appearance of the factor |µ| in the closure term of the Levermore-Pomraning equations has
been conjectured as a source of inaccuracy of the model for slab geometry problems. This |µ|
factor does not appear in the closure term in two and three dimensions. While it is difficult to
generate realizations of Markovian statistics in multiple dimensions, it may be possible to
perform a similar benchmark comparison of the Levermore-Pomraning model for different
material statistics.
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Figure 1. Scalar flux distribution comparison for case 1b and L = 10
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Figure 2. Scalar flux distribution comparison for case 2a and L = 10
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Figure 3. Scalar flux distribution comparison for case 3c and L = 10
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